

Dr. Bruce Fink
Army Research Laboratory

7th International Artillery & Indirect Fire Symposium & Exhibition Parsipanny, NJ

18-19 June, 2002

Enabling Materials for Indirect Fire Weapon Systems

- horizontal technology
- historical usage
- broad application
- cost-effective....especially considering life cycle
- enablers for lethality, survivability, logistics transformation
- technology toolkit for all weapons designers

Composite Materials The FCS+ Field of Play

Integral Armor

Lightweight Armaments

Advanced Munitions

- Multifunctional Lightweight Vehicular Armor
- Nanomaterial-based Transparent Armor
- Shock Mitigation in Composite Armor Structure
- Graded Structures/Controlled Interphases
- Transient Progressive Failure Mechanics
- Low-cost Processing/Repair
- Embedded Sensors/Integrated Signature

- Kinetic Energy Projectile Sabots
- Smart Piezoelectric Control Surfaces
- Ejectable Composite Cases
- Composites for Insensitive Munitions
- MMC Shells

Materials Technology Success Story

ALUANTTECHSYSTEMS

1. Basic principles observed and reported.

Lightweight Mortars

Refractory Metal

Cladding

4340 Steel

Tantalum

Objective:

Decrease the weight of 81mm and 120mm Mortar Systems.

Technical Barriers:

- Limitations of Itwt materials' thermal capacity
 - Loss of yield strength at elevated temp.
 - Degradation of composite matrix
- High firing rate requirements
 - 81-mm: 30 rpm for 2 min; 15 rpm sustained
 - 120-mm: 16 rpm for 1 min; 4 rpm sustained
 - Finite # of rounds in firing scenario make lightweight systems more viable

Design Approaches:

Polymer-Matrix Composites

High temperature composites (IM7/RP46 polyimide)

Metal-Ceramic-Metal Composites

- Integrated MMC/CMC barrel wall
- Fully dense CMC liner
- Fully dense AMC jacket

Applications:

Artillery Gun Tubes

Objective:

Decrease the weight, pull back the CG, increase the stiffness, increase the life, and increase the energy of large caliber gun tubes.

Technical Barriers:

- Steel Barrels
 - Lightweight Confinement Materials/Designs
 - Degradation of Composite Matrix
- Ceramic Barrels
 - Identify Suitable and Producible Ceramic Liners
 - Maintain Tri-axial Compressive State

Application:

FCS MRAAS

Benet Labs Steel/Composite Gun Tested at ARL Jan'02

Design Approaches:

Steel Barrels with PMC/MMC Composite Overwrap

Analysis Techniques

Processing Techniques

Ceramic Barrels with Confining Material Overwrap

Ceramic Material Characterization & Downselection

Probabilistic Analysis President analysis Pr

Transient ThermoMechanical Modeling

Smart Cargo Munitions

Metal Matrix Composite and HYBOR shells offer >50% reduction in parasitic mass compared to steel, and >50% reduction in parasitic volume compared to graphite/epoxy

Objective:

- 1: Decrease the parasitic mass.
- 2: Increase the triaxial loading ability, and
- 3: Maximize the cargo volume of ogive-heavy smart artillery munitions.

Technical Barriers:

Material Design Parameters

- PMC technology is mature
- MMC technology is currently being matured for MRAAS smart cargo designs

Joint Design

- PMC shell joint designs successfully tested
- MMC shell joints currently being investigated at **ARL**

Manufacturing

- PMC shell manufacturing technologies mature with broad industrial base
- Only cost-effective MMC material is 3M's Nextel alumina fibers in aluminum matrix. Small but growing industrial base. High commercial growth. Several manufacturing issues to be addressed for scale-up.

Advanced Polymers

- Require novel polymer formulation/synthesis for specialized/unique requirements in munitions.
 - radomes: hi-temp, hi-performance, RF-transparent
 - electronics packaging: g-hardened, uniform CTE, tough

Design Approach:

Polymer-Matrix Composite Shells

shells 2/3 the weight of steel shells

current technology

Metal-Matrix Composite Shells

• up to 1/3 weight reduction over steel for same volume

- developed analysis techniques
- performing building block characterization
- will fire MMC cargo projectile by Apr '03

MMC Shell Buckling Analysis for CTA MRAAS Smart Cargo

Applications:

MRAAS Smart Cargo, XM892 Excalibur

SMART FINS

Objective:

To use piezoelectric materials in fins to improve the accuracy of trajectories for projectiles during flight.

Technical Barriers:

- Weight and power supply limitations.
- Launch and in-flight load requirements.
- Fin performance envelope to meet aerodynamic requirements.
- Deployment issues.

Application: Smart Cargo Projectiles: Smart Fins and Canards Missiles: Smart Fins and Canards

Design Approach:

Theoretical Model Development

22nd Order ODE

Conceptual Design Study

Double Beam 8.0 °

Design charts to define fin performance envelope.

Smart Control Wing

Other Armament Components

Objective:

Decrease the weight and increase stiffness of critical armament components.

Technical Barriers:

- Require simultaneous high stiffness and strength
- Integration of multiple materials is key to success

Design Approach:

Weight trade study on all components with detailed analysis and design of a composite/metal breech ring.

Swing Chamber

Breech Ring

Enabling Materials for Indirect Fire Weapon Systems

- horizontal technology
- historical usage
- broad application
- cost-effective....especially considering life cycle
- enablers for lethality, survivability, logistics transformation
- technology toolkit for all weapons designers